

INSTITUTE OF ENGINEERING GEODESY AND MEASUREMENT SYSTEMS

The Importance of Calibration of Fibre Optic Sensing Systems

Prof. W. Lienhart

Graz University of Technology, Austria

werner.lienhart@tugraz.at

Measurements

Raw measurement

- Intensity
- Frequency/Wavelength
- Phase

Derived quantity

- Strain
- Strain rate
- Temperature

Relation between raw measurement and derived quantity has to be known!

Component Testing & Calibration

IGMS measurement lab

- Temperature controlled (20°C ± 0.5°C)
- Vibration isolated floor
- Static strain calibration
- Temperature calibration
- Dynamic testing
- Long term evaluation

Sound studio

- Zero noise environment
- Zero vibration environment

Fibre Optic Calibration

What is the achievable accuracy of a fibre optic measurement system?

Length change: $0 \le \Delta L \le 30$ cm

Static Strain Calibration

Design

- Controlled length changes
- Reference values by laser interferometer
- Fully automated operation
- Gage length up to 30m
- Accuracy of reference value ca. 0.2µm

Test features

- Calibration of various sensor types (FBG, SOFO, DFOS cables, ...)
- Calibration of bare fibres or sensors with housing
- System calibration
 - Calibration of complete system with instrument sensor adapter

Example

Calibration of FBG sensor

Calibration function given by the manufacturer

Example

Calibration of FBG sensor

 Calibration function given by the manufacturer not sufficient for highest accuracy

Example

- Calibration of DFOS Cable
- Measurement with Rayleigh instrument
- Linear relationship
- Run in effects can be observed
- Variations within ± 5 µm after 1st cycle

Graz University of Technology

28.06.2022

Padova – FOS Calibration

Temperature Calibration

Principle

- Sensing cable placed into water bath or climate chamber
- Temperature cycles

Fibre Optic Calibration

What happens when the reading unit has to be changed?

Is there an offset in the data?

Long term stability: Laboratory verification

Test setup 1

- Standard sensor cable for distributed fibre optic sensing
- Sensor cable is pre-strained with ~3.5% (bare fibre limit for long term)
 (≙ 20 mm at 60 cm base)
- Regular measurements over several months

Long term stability: Laboratory verification

Long term stability: Laboratory verification

Reason for this behaviour?

- Composite sensor cable construction => fiber creeps at high strain
- After 3 months only 1.2% (≙ 7 mm at 60 cm base) are measured instead of 3.5%

Long term stability

Test setup 2

- Permanent laboratory installation with constant strain
- Investigation of long term behaviour

15

Long term stability

Test setup 2

- Marker to detect possible slip of anchors
- Marker to verify stability of anchors
- Measurement of markers with total station

angle readings: $\sigma_{\text{HZ}}\text{=}2.6cc \rightarrow ca.~14 \mu m @~3,3m$

Long term stability

Result

No drift within 3 months

Dynamic Testing

Seafom

- Measuring Sensor Performance (SEAFOM MSP-02)
- 3 stretcher

IGMS Setup

- 3 stretcher with 40 m
- Total length 40 km

Fibre Optic Calibration

Laboratory measurements are nice but what about the real world?

Relocation of River Stream

Measurement Concept

Dam Surface

Strain [%]

Graz University of Technology

28.06.2022

Padova – FOS Calibration

Long term stability: On-site verification

Long term stability: On-site verification

Total station measurements

Length change from coordinates

 $\Delta l = l_{t2} - l_{t1}$

$$l_{ti} = \sqrt{(x_{E_{ti}} - x_{A_{ti}})^2 + (y_{E_{ti}} - y_{A_{ti}})^2 + (z_{E_{ti}} - z_{A_{ti}})^2}$$

DFOS measurements

 Length change from integrated strain measurements

$$\Delta l = l_{Gauge} \sum_{i=1}^{n} \epsilon_i$$

The Gradenbach Observatory

Strain Rosette

Installation

2007

Acceleration and Deceleration Phases

Verification

Comparison Geodetic and Fibre Optic Measurements

2007-2009

Compression phase

2009-2011

Decompression phase

Conclusion

Laboratory calibration

- Special infrastructure needed due to high resolution of FOS measurements
- Some sensor cables show drifts
- Errors up to 10% without calibration

Field validation

- External geodetic measurements can independently verify FOS
- Other internal point wise measurements e.g. VWS can verify FOS

Thank you for your attention

Graz University of Technology

28.06.2022