

Università degli Studi di Padova

Material Point Method per la simulazione di problemi geotecnici a grandi spostamenti. Uno strumento per avanzare lo stato della pratica?

Francesca Ceccato

Sommario

- Introduzione
 - Modellazione numerica in geotecnica
 - Concetti base del Material Point Method
- Applicazioni:
 - Collasso di un rilevato arginale
 - Collasso di un pendio innescato da pioggia
 - Ancoraggi
 - Gallerie

Cos'è un modello geotecnico?

• **Rappresentazione** matematica e computazionale del terreno e delle strutture geotecniche

Magritte (1929)

A cosa serve la modellazione numerica?

- **Studiare** il comportamento del terreno e delle opere geotecniche in diverse condizioni di carico.
- **Supporto** alla progettazione delle opere e alla valutazione e mitigazione del rischio geotecnico (frana, sisma...)

Stato dell'uso della modellazione numerica

How often do you use numerical methods in your work?

123 risposte

Risultati sondaggio effettuato da TC103 - numerical methods (gennaio-febbraio 2022)

Ì

Stato dell'uso della modellazione numerica

What numerical method do you use?

120 risposte

Risultati sondaggio effettuato da TC103 (gennaio-febbraio 2022)

Problemi a grandi spostamenti

argini, dighe, frane

Stabilità degli scavi

Simulazione di problemi a grandi spostamenti

UL-FEM non è adatto a simulare grandi deformazioni/spostamenti per problemi di convergenza legati alla deformazione degli elementi

Metodi alternativi

Tra i metodi basati sul continuo, possono simulare grandi spostamenti:

- Arbitrary Lagrangian-Eulerian (ALE) methods
- Coulped Eulerian Lagrangian Method (CEL)
- Smoothed Particle Hydrodynamics (SPH)
- Particle Finite Element Method (PFEM)
- Material Point Method (MPM)

MPM: concetti base

L'MPM utilizza due livelli di discretizzazione:

1. Il corpo è discretizzato da una nuvola di **punti materiali** (MP) che tracciano tutte le proprietà del continuo, ad esempio massa, velocità, accelerazione, sollecitazioni e parametri materiali.

2. Una **mesh** di sfondo copre l'intero spazio in cui ci si aspetta che il corpo si muova.

MPM: concetti base

11

(cc)

() BY

MPM: concetti base

Grandi spostamenti vengono simulati da MP che si muovono attraverso la mesh

• Flussi glarulari: column collapse (Mast et al. 2014, Fern et al. 2016, Ceccato et al. 2020...), flussi su piani inclinati, impatto su strutture (Cuomo et al 2021)...

13

CC

• Slope stability: frane indotte da sisma (Alsardi et al. 2021), O pioggia (Cuomo et al. 2021, Girardi et al. 2022), progressive failure (Alonso and Zabala 2011, Yerro et al. 2014, Conte et al. 2019, 2020), instabilità di argini e dighe (Bandara and Soga 2015, Ceccato et al. 2020, Girardi et al. 2021)...

Introduzione/movimento di strutture nel terreno: Fondazioni superficiali (Woo and Salgado 2018), installazione di pali (Nuygen et al. 2014), CPT/CPTU (Beuth and Vermeer 2013, Ceccato et al. 2016), pullout ancore (Ceccato et al. 2018), installazione di ancore

anchor pullout

 (\mathbf{i})

BY

CC

• Problemi erosivi: overflow (Liang et al. 2020), Suffusion (Yerro et al 2017, Murphy et al 2020), infiltrazioni in opere in Sotterraneo (Xiaochuang et al. 2021)

Ĵ

Codici attualmente disponibili

- AMPLE https://wmcoombs.github.io/download/ (W. Coombs, C. Augarde, Duram, UK)
- **CB-Geo MPM** <u>github.com/cb-geo/mpm</u> (K. Soga, K. Kumar, Cambridge & UBC Berkeley)
- **SIMPA**: the MPM implementation at TU Delft (P. Vardon)
- MPM in KRATOS Multiphysics <u>github.com/KratosMultiphysics/Kratos/wiki</u>
- NairnMPM/OSParticulas (and NairnFEA) by prof. John Nairn (Wood Science & Engineering, OSU, Corvallis, OR)
- **Uintah** MPM software <u>www.uintah.utah.edu</u>(Utah, US)
- MPM3D, <u>http://comdyn.hy.tsinghua.edu.cn/english/mpm3d</u> (Prof. X: Zhang, Tsinghua University, China)
- Karamelo (Deakin University & Monash University, Australia)
- Many others...

17

Anura3D research community

Anura3D (<u>www.anura3d.com</u>):

- Open source (<u>https://github.com/Anura3D/Anura3D_OpenSource/tree/main/src</u>)
- Focus su interazione fluido-terreno-struttura
- Grande Gruppo di sviluppatori&utilizzatori

Risk Assessment of Earth Dams and River Embankments to Earthquakes and Floods

Applicazioni: collasso arginale per sollevamento al piede

Veronica Girardi, Francesca Ceccato, Alex Rohe, Paolo Simonini, Fabio Gabrieli

Girardi, V. *et al.* (2022) 'Failure of levees induced by toe uplift: Investigation of post-failure behavior using material point method', *Journal of Rock Mechanics and Geotechnical Engineering*. doi:10.1016/j.jrmge.2022.07.015.

Sollevamento al piede (uplift)

Adapted from Van (2005)

Come fare la valutazione della sicurezza?

Stato della pratica: valutazione fattore di sicurezza (FS)

- 1. Metodo analitico: $\sigma > u$
- 2. Equilibrio limite (LEM)
- 3. Elementi Finiti (FEM)

Ð

Esperimento in centrifuga

22

CC

Đ

Modello analitico

- $FS = \sigma/u$
- Uplift inizia già prima della fase 3:

 $\sigma = \gamma z = 20,4 * 3,6 = 73,44 k P a$

 $u_{toe,3} = 75,68kPa > 73,44kPa$ (FS=0,97) $u_{toe,4} = 88,43kPa$ (FS = 0,830)

Vantaggi:

 Analisi molto molto veloci e semplici (utili per analisi probabilistiche o parametriche)

Svantaggi:

- Solo equilibrio verticale
- I risultati potrebbero non essere realistici
- Nessuna informazione sugli spostamenti

Modello all'equilibrio limite

Metodo di Van (variante del metodo dei conci)

	Argilla	Sabbia
Peso di volume, γ, kN/m ³	20,4	20
Angolo d'attrito [°]	22	37
Coesione [kPa]	10	0

Đ

Risultati metodo di Van

Fase 3 FS=0.963

FS<1 argine instabile (inizio rottura)

FS>1 argine stabile

FS<<Argine instabile (collasso)

06/06/2023

25

CC)

 $\textcircled{}$

Considerazioni

Vantaggi:

- Analisi molto veloci e semplici (utili per analisi probabilistiche o parametriche)
- Sono necessari solo i parametri di resistenza
- Nessun problema di convergenza

Svantaggi:

- Superfice di rottura ipotizzata a priori
- Nessuna informazione sugli spostamenti

Modello FEM (stress-seepage)

FS può essere calcolato con SRM (phi-c-reduction)

	Argilla	Sabbia
Peso di volume, γ, kN/m ³	20,4	20
Angolo d'attrito [°]	22	37
Coesione [kPa]	10	0
Modulo Elastico [MPa]	5,5	55
Coefficiente di Poisson [-]	0,15	0,33
Conducibilità idraulica [m/s]	7,4*10 ⁻⁹	7,4*10 ⁻³

Đ

BY

CC

Risultati modello FEM (stress-seepage)

Vantaggi:

- La superficie di rottura è il risultato del calcolo
- Lo spostamento può essere calcolato solo per piccole deformazioni
- Costo computazionale medio

Svantaggi:

- Richiede più parametri
- Problemi di convergenza (nessuna soluzione per FS<1,1)

(†)

BY

28

Modello MPM (two-phase fully coupled)

Risultati modello MPM

Đ BY

Risultati modello MPM

Risultati modello MPM

Vantaggi:

- La superficie di rottura è il risultato del calcolo
- Lo spostamento può essere calcolato anche per grandi deformazioni
- Si può visualizzare tutta l'evoluzione del processo deformativo

Svantaggi:

• Costi computazionali elevati

Osservazioni

- Metodi analitici e all'equilibrio limite:
 - sono molto semplici e rapidi da utilizzare,
 - richiedono pochi parametri,
 - possono fornire anche FS<<1 (qualsiasi condizione di carico è simulabile)
 - non danno informazioni sugli spostamenti
- Metodo degli elementi finiti:
 - Un po' più complesso e computazionalmente costoso
 - servono più parametri (ad es. modulo elastico, permeabilità ecc)
 - Non può simulare condizioni FS=1 (problemi di converegenza)
 - Ottimo per piccoli spostamenti
- Material Point Method:
 - Può simulare l'intera evoluzione del collasso, anche grandi spostamenti
 - Computazionalmente più costoso (specialmente nella fase di innesco)

Applicazioni: collasso di un pendio indotto da pioggia

Meng Lu, Francesca Ceccato, Lorenzo Brezzi, Matteo Camporese, Davide Vallisari

Ceccato, F. *et al.* (2023) 'Simulation of rainfall-induced landslides from small to large displacements with an efficient sequential use of FEM and MPM', in *CNRIG*, Palermo, 5-7 Luglio 2023

Modello fisico

35

Strategia di simulazione

 (\mathbf{i})

BY

(cc)

Analisi di filtrazione

Comportamento parzialmente saturo del terreno: modello di Van Genuchten.

37

(CC)

Analisi di stabilità

Inizializzazione analisi MPM

Inizializzazione analisi MPM

F. Ceccato

 $\textcircled{}$

BY

CC)

Osservazioni

- Metodi «tradizionali» (FEM, LEM...) possono essere usati congiuntamente all'MPM per ottimizzare il costo computazionale
- MPM può essere di supporto per stimare gli spostamenti postcollasso

NTC2018. Cap 6.3.4 VERIFICHE DI SICUREZZA (pendii naturali) [...] L'adeguatezza del margine di sicurezza ritenuto accettabile dal progettista deve comunque essere giustificata sulla base del livello di conoscenze raggiunto, dell'affidabilità dei dati disponibili e del modello di calcolo adottato in relazione alla complessità geologica e geotecnica, **nonché sulla base delle conseguenze di un'eventuale frana**.

Applicazioni: piastre di ancoraggio

Francesca Ceccato

Alberto Bisson

Simonetta Cola

Ceccato, F., Bisson, A. and Cola, S. (2017) 'Large displacement numerical study of 3D plate anchors Large displacement numerical study of 3D plate anchors', *European Journal of Environmental and Civil Engineering*. doi:10.1080/19648189.2017.1408498.

Anchor pullout

(a) Slow-moving slope Grouted bar Grouted bar Bedrock

Qual è la forma migliore? Qual è l'interasse ottimale?

Risultati sperimentali

(CC)

 (\mathbf{i})

Risultati sperimentali

Terreno mobilitato a 50mm.

Le zone più chiare indicano porzioni di terreno con spostamenti più elevati.

		Resistenza ultima a grandi spostamenti
	Forma	q _{exp} [kPa]
а	TS	47.4
b	SFC	54.3
с	MFC	66.2
d	LFC	71.8

СС

Ì

Modello MPM

- Materiale secco
- Geometria 3D, elementi tetraedrici
- Contatto attritivo ancora-terreno (μ =tan(ϕ))
- Velocità costante dell'ancora (v=20 mm/s>0,17mm/s)
- Moving mesh

Parameter	Symbol	Value
Young modulus [MPa]	E	12
Poisson ratio [-]	ν	0.2
Solid grain density [kg/m ³]	$ ho_s$	2650
Cohesion [kPa]	С	0
Friction angle [°]	φ	35.5
Dilatancy angle [°]	Ψ	0
Earth pressure coefficient	K _o	0.426
Porosity	n	0.4

CC

lacksquare

Risultati numerici

Risultati numerici

01/06/2023

F. Ceccato

48

CC

Analisi parametriche

Ottimizzazione dell'interasse.

Effetto dell'angolo d'attrito

(CC)

 (\mathbf{i})

ΒY

Applicazioni: danni in galleria

Xie Xiaochuang, Francesca Ceccato, Mingliang Zhou, Dong-Mei Zhang

Motivazioni

51

CC

 (\mathbf{i})

ΒY

Modello numerico

- 2D stato piano (elementi triangolari)
- Materiale saturo (two-phase formulation)
- Contatto terreno-struttura

Cohesion, c	0	kPa
Friction angle, f	35	o
Young's modulus, E	40000	kPa
Density of grains, r _s	2650	kg/m³
Poisson ratio, ບ	0.3	
Porosity, n	0.45	
Intrinsic permeability, k	1×10 ⁻¹⁰	m²
Water density, ρ_{w}	1000	kg/m³
Water bulk modulus, K_w	80000	kPa
Water viscosity, μ	1.002×10 ⁻⁶	kPa⋅s

Ì

Evoluzione degli spostamenti e deformazioni

- Flow zone (> 0.05 m)
- Disturbed zone (0.01 m ~ 0.05 m)
- Stationary zone (< 0.01 m)

Evoluzione delle pressioni sul rivestimento

Spinta del terreno

Effetto della posizione del difetto

 (\mathbf{i})

BY

CC

Spostamenti e deformazioni

Pressioni sul rivestimento

- case 1

case 2

case 3

case 4

case 5

75°

90°

105°

Conclusioni

- MPM è un metodo di discretizzazione adatto per simulare problemi a grandi spostamenti
- Può essere applicato a molti problemi geotecnici
- MPM può essere utilizzato con altri metodi (FEM, LEM...) per avanzare la comprensione di problemi geotecnici
- Attualmente è utilizzato principalmente per progetti di ricerca, ma ha il potenziale di far avanzare lo stato dell'arte e lo stato della pratica nell'ingegneria geotecnica

